柱状图-排名echarts 柱状配置项内容和展示

配置项如下
      var img =
  '';
var colorList = ['rgb(255, 97, 105)', 'rgb(255, 145, 97)', 'rgb(255, 194, 97)', 'rgb(30, 197, 144)', 'rgb(35, 154, 229)'];
var datas = [
  {
    value: 60,
    name: '金丝猴',
  },
  {
    value: 52,
    name: '斑羚',
  },
  {
    value: 48,
    name: '梅花鹿',
  },
  {
    value: 36,
    name: '红腹锦鸡',
  },
  {
    value: 30,
    name: '猪',
  },
  {
    value: 30,
    name: '测试图片',
  },
];
let maxArr = new Array(datas.length).fill(datas[0].value * 1.5);
option = {
  backgroundColor: '#11283a',
  title: {
    text: '排名',
    top: 50,
    left: 'center',
    textStyle: {
      color: '#fff',
      fontSize: 20,
    },
  },
  tooltip: {
    show: true
  },
  legend: {
    show: false,
  },
  grid: {
    left: '5%',
    right: '10%',
    bottom: '20%',
        top: '20%',
    containLabel: true,
  },
  xAxis: {
    show: false,
    type: 'value',
  },
  yAxis: [
    {
      type: 'category',
      inverse: true,
      axisLine: {
        show: false,
      },
      axisTick: {
        show: false,
      },
      axisPointer: {
        label: {
          show: true,
          margin: 30,
        },
      },
      data: datas.map((item) => item.name),
      axisLabel: {
        margin: 40,
        fontSize: 12,
        align: 'left',
        color: '#fff',
        rich: {
          a: {
            padding: [0, 0, 50, 10]
          },
          a6: {
            color: '#fff',
            backgroundColor: {
              image: img,
            },
            width: 30,
            height: 30,
            align: 'center',
            borderRadius: 30,
          },
          a1: {
            color: '#fff',
            backgroundColor: 'rgba(255, 97, 105, 0.6)',
            width: 30,
            height: 30,
            align: 'center',
            borderRadius: 30,
          },
          a2: {
            color: '#fff',
            backgroundColor: 'rgba(255, 145, 97, 0.6)',
            width: 30,
            height: 30,
            align: 'center',
            borderRadius: 30,
          },
          a3: {
            color: '#fff',
            backgroundColor: 'rgba(255, 194, 97, 0.6)',
            width: 30,
            height: 30,
            align: 'center',
            borderRadius: 30,
          },
          a4: {
            color: '#fff',
            backgroundColor: 'rgba(30, 197, 144, 0.6)',
            width: 30,
            height: 30,
            align: 'center',
            borderRadius: 30,
          },
          a5: {
            color: '#fff',
            backgroundColor: 'rgba(35, 154, 229, 0.6)',
            width: 30,
            height: 30,
            align: 'center',
            borderRadius: 30,
          }
        },
        formatter: function (params) {
          var index = datas.map((item) => item.name).indexOf(params);
          index = index + 1;
            return ['{a' + index + '|' + index + '}' + '  ' + '{a|'+'}'].join('\n');
        },
      },
    },
    {
      type: 'category',
      inverse: true,
      axisTick: 'none',
      axisLine: 'none',
      axisLabel: {
        show: true,
        fontSize: 14,
        color: '#aae9ff',
        inside: true,
        formatter: function(value, index) {
                return datas[index].name+'   '+datas[index].value;
            },
        rich: {
          a: {
            padding: [0, 0, 0, 0]
          }
        }
      },
      data: datas.map((item) => item.value),
    },
  ],
  series: [
    {
      z: 2,
      name: '数量',
      type: 'bar',
      barWidth: 7,
      zlevel: 1,
      data: datas.map((item, i) => {
        return {
          value: item.value,
          itemStyle: {
            color: colorList[i],
          },
        };
      })
    },
    {
      name: '背景',
      type: 'bar',
      barWidth: 7,
      barGap: '-100%',
      itemStyle: {
        color: 'rgba(118, 111, 111, 0.1)',
      },
      tooltip: {
        show: false
      },
      data: maxArr,
    },
  ],
};

    
截图如下